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We introduce a new definition of ordered phase in a magnetic system based on
properties of the local spin state probability. A statistical functional associated
to this quantity depends both on amplitude and direction of the local magneti-
zation. We show that it is possible to introduce an expansion at fixed magneti-
zation amplitude in the inverse of lattice coordination number if the direction is
selected by an extremum condition. In the limit of infinite coordination number
we recover the mean field results. First order corrections are derived for the
Ising model in the presence of a transverse field and for the XY model. Our
results concerning critical temperature and order parameter compare favorably
with other approaches.
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1. INTRODUCTION

In this work we discuss a new method to obtain an expansion around the
mean field in terms of the inverse coordination number z in the ordered
phase of a quantum magnetic system. This expansion is obtained both
within a new characterization of the symmetry broken phase.
A systematic series expansion for quantum spin systems as been

already developed in the early sixties. (1) In this work an high density
expansion, related to 1/z is derived close to the critical point. The leading
term gives the molecular field approximation and the next to the leading
terms correction to the mean field. In the ordered phase they derive a low
temperature expansion which is compared with the Dyson’s spin wave
theory. (2) However in the ordered phase a meaningful expansion in 1/z



implies a resummation in the expansion in the power of b=1/kBT (where
kB is the Boltzman constant). (3, 4) This resummation fails in the case of
quantum system as discussed precisely in ref. 4.
Our approach, based on the methods first introduced by G. Jona

Lasinio (5, 6) partially overcomes this difficulty.
For quantum systems defined on a lattice (7, 8) the ordered phase is

usually defined in terms of the generating functional

C({li})=−
1
b
ln Tr 3e−bHT exp 5Fb

0
C
i
li(y) Oi(y) dy64 (1)

where Oi is the local symmetry breaking operator associated to the magne-
tization (mi=OOiP), li are the local source fields2 and T stands for the

2 In the present work when a local quantity appear between {} it means that the whole
ensemble of these local quantity should be considered.

usual time ordered product in the imaginary time. (9) In the usual approach
the standard thermodynamic functional is recovered in the limit of static
source fields (li(y)Q li). In this limit, the generating functional becomes
the free energy in the presence of a symmetry breaking Hamiltonian.

lim
li(y)Q li

C({li})=−
1
b
ln Tr 3exp 5−b 1H−C

i
liOi 264 (2)

As an alternative approach we discuss the limit of impulsive fields (li(y)Q
blid(0+)). In this limit the generating functional becomes

lim
li(y)Q blid(0

+)
C({li})=−

1
b
ln Tr 3e−bH exp 5b C

i
liOi64 (3)

and can be interpreted as the statistical generating functional of the local
operator Oi. The possible ambiguities, due to the high power of the Dirac
delta function, in the expansion of the time ordered product, are overcome
if the step function verifies the identity h(0)=1/2. (10)

The two approaches are obviously equivalent in the classical case
where the local symmetry breaking operators commutes with the system
Hamiltonian.
In both approaches just described the free energy is recovered in the

limit of vanishing source fields. For a quantum magnetic spin system we
find convenient to relate Oi to the local spin density matrix operator

Oi=(2ri−1)

Oi=si · ni
(4)
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The statistical average of ri is the Local Spin State Probability (LSSP)
which is of direct interest in quantum information theory. (11, 12) Recently (13)

we have shown how the behavior of the LSSP changes in the presence of an
ordered phase. Here we show how to characterize the ordered phase in
terms of the LSSP properties.
We remark that, the choice of si · ni as the symmetry breaking opera-

tor naturally introduces a direction in the two dimensional local Hilbert
space which characterize the spin state (C({li})Q C({li}, {ni})). This
direction will be fixed by a minimum condition on the free energy. The
presence of a direction naturally leads to define a magnetization vector,
whose amplitude is the magnetization.
This new approach can be extended to the study of ordered phases of

other quantum systems defined on a lattice, like the Hubbard and Holstein
models, in the strong coupling limit. In these models the role of the local
spin is played by the doubly degenerate ground state of the local Hamilto-
nian which corresponds to a particular choice of the chemical potential.
In our approach the expansion is obtained by considering, first, a

Legendre transform which introduces a new functional which depends of
magnetization instead on the source field.

W({mi}, {ni})=C({li}, {ni})−C
i
limi (5)

The Legendre transform establishes an inversion relation between the
source field and the magnetization.

li({mi}, {ni})=−
1
b

“W

“mi
(6)

Taking into account the relation between source field and magnetization,
which is fixed in the free spin limit (H=0), for S=1/2 we obtain the self
consistent solution for the magnetization

mi=tanh(bli(m)) (7)

A systematic expansion of W, and then of li(m) can be achieved splitting
the system Hamiltonian in a mean field contribution and a fluctuations
operator. The zero-th order term of this expansion recovers the mean field
solution. This method is fully explained in Section 2.
Our results are compared with the traditional approach in the XY and

quantum Ising models. In the first case (Section 3) we compare the result
for the critical temperature obtained in the first order of 1/z expansion
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with the one obtained at the same level from an R.P.A. calculation. In the
second case (section 4) we compare with results obtained in the work of
Stratt (14) which is based on an improvement of classical mean field theory
proposed by Kirkwood. (15, 16) These results are, actually, easily derived
within the previously quoted ‘‘traditional’’ approach by means of an
expansion around the mean field. The only difference is that the symmetry
breaking terms lies along the z axis (while the external field lies on the x
axis) and the relation between lz and mz are fixed at zero spin interaction.
The comparison is always in favour of our approach especially close to the
critical temperature. The improvement is shown to be related to the pres-
ence of two variational parameters.

2. THE DEFINITION OF THE ORDERED PHASE

In this paper we consider a spin system described by the following
Hamiltonian

H=−12 C
ij, a
Jaijs

a
i s
a
j −C

i, a
hai s

a
i (8)

Here for a given site i, j runs on the z next neighbours sites, the interaction
strength Jaij is assumed to scale with 1/z and the index a is associated to the
three spin components. With a suitable choice of Jaij we may recover
respectively the Ising, the XY and the Heisenberg model are recovered.
To study systems described by the Hamiltonian of Eq. (8), we start from

the definition of a generating functional of Eq. (1) where we choose to work
with the more general operator that can be used to violate the Hamiltonian’s
symmetry (Oi=si ·ni), where {n

a
i }=(sin hi cos ji, sin hi sin ji, cos hi) and

the component of the s vector are the Pauli operators. In the traditional
approach the limit of a static source field is considered and a thermodynamic
functional is obtained.

F({li}, {ni})=
1
b
ln Tr 3exp 5−b 1H−C

i
lisi · ni 264 (9)

Instead, our alternative definition takes into account the limit of an impul-
sive source field and leads to the generating functional

C({li}, {ni})=
1
b
ln Tr 3e−bH exp 5b C

i
li(si · ni)64 (10)

The first momentum of C is related to the density matrix

OriP=
1
2
+
1
2
“C

“li
:
l=0

(11)
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whose physical interpretation is the probability of having a spin in the ith
site in a given state |SiP=cos(hi/2) |‘Pi+e iji sin(hi/2) |aPi when the
system is at thermal equilibrium:

OriP=
Tr(e−bH |SiPOSi |)
Tr(e−bH)

(12)

It is important to note that the trace is over a complete set of whole system
while the projection operator is associated to the spin state of a fixed site i.
The functional C is clearly related to the free energy of the system in

the limit of vanishing source field. From (10) we define the magnetization
in the presence of a source field

mi=
“C

“li
(13)

By means of a Legendre Transform we define a new functional
W(m)=C(l)−; i limi whose independent variables are the magnetization
amplitude mi and direction ni

W({mi}, {ni})=
1
b
ln Tr 3e−bH exp 5b C

i
li(si · ni−mi)64 (14)

The source field li as a function of mi and ni is given by

li=−
“W

“mi
(15)

It is convenient to invert the relation between li and the independent vari-
able mi in the limit of free spins, i.e., when both the interaction between
spin on different sites of the lattice and the external field vanish (H=0).
Defining, for any operator O the expectation value at zero Hamiltonian
OOP0 as

OOP0=
Tr[eb ;i li(0) si · niO]
Tr[eb ;i li(0) si · ni]

(16)

we obtain for mi=Osi · niP0

mi=tanh(bli(0)) (17)

The thermodynamic value of the magnetization mi is obtained in the limit
of vanishing source fields li and thus, taking into account (15), by the
extremum condition “W

“mi
=0.
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Our procedure can be summarized as follows. We first consider 1/z
expansion for W

W=C
k

1
zk
W (k) (18)

From Eq. (15) a corresponding expansion can be obtained for the source
fields l (k)i =−“W

(k)/“mi. This condition gives an explicit equation for l
(k)
i if

the knowledge of W (k) implies only the knowledge of l (s)i with s < k for
k > 0. Hence, we need an ansatz for l (0)i and for the magnetization direc-
tion which will be verified self consistently. This ansatz is suggested by the
well known mean field approximation.
First of all it is convenient to split the Hamiltonian of the system in

three different contributions. These contributions are represented by a
mean field contribution (Hmf), a constant (H0) and a bilinear non local
operator (Hf) which is related to the fluctuations around the mean field.

H=Hmf+Hf+H0

Hmf=−C
ij, a
Jaijm

a
j (s

a
i −m

a
i )−C

i, a
mai (s

a
i −m

a
i )

Hf=−
1
2 C
ij, a
Jaij(s

a
i −m

a
i )(s

a
j −m

a
j )

H0=−
1
2 C
ij, a
Jaijm

a
im

a
j −C

i, a
maim

a
i

(19)

We find convenient to express Hmf in terms of the modulus ni and the
direction n −i of a self consistent field whose components are n

a
i=

; j J
a
ijm

a
j+m

a
i

Hmf=−C
i
ni(s · n

−

i)+C
i
nimi(ni · n

−

i) (20)

Next step is to split the statistical weight into two factors by means of a
time ordered product. So W becomes

W=ln Tr[eb ;i li(si · ni −mi)e−bHmfL]−bH0

L=T exp 5−Fb
0
dyHf(y)6

(21)

where Hf(y) evolves in the quasi time y as

Hf(y)=U(−y) HfU(y)

U(y)=exp 1y C
i
ni(s · n

−

i)2
(22)
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As far as the first step of the iteration process is concerned, W (0) should
depend only on li(0). This condition is satisfied if l

(0)
i −li(0)=−ni and

ni=n
−

i. Within this ansatz the statistical weight appearing in Eq. (21)
reduces to that of the H=0 limit and consequently all the contributions
arising from the expansion of the time ordered product of zero order in
1/z, vanish. In fact, these terms are characterized by the presence of, at
least, two independent sites but the average of a fluctuation operator on
each of these sites with the H=0 statistical weight vanishes because
of (17). Therefore W (0) becomes

W (0)=−
1
b
C
i

51+mi
2
ln 11+mi

2
2+1−mi

2
ln 11−mi

2
26−H0 (23)

Moreover it must be observed that this ansatz at equilibrium implies
li(0)=ni and then from (17)

m (0)i =tanh(bni) (24)

From the condition ni=n
−

i we obtain a magnetization direction selection
ni=n

(0)
i associated to the zero order approximation. The self consistency of

the ansatz is obtained verifying that the extremum conditions “W (0)/“m=
“W (0)/“h=“W (0)/“j=0 are satisfied at equilibrium.
Next step is the calculation of W (1) once l (0)i is known. It is important

to note that possible corrections arising from the expansion of the statisti-
cal weight of (21) cancel if we restrict the magnetization direction space in a
small region around n (0)i and m

(0)
i of order 1/z. For this reason the first

correction to the mean field calculation of W is.

W (1)=
1
b
L (1) (25)

where L (1) takes into account all contributions of order 1/z deriving from
the time ordered product. In the simple case of a hypercubic lattice we have

L (1)=F
b

0
F
y

0
OHf(y) Hf(yŒ)P0 dy dyŒ (26)

It is important to note that our expansion method even if limited in the
neighbourhood of the mean field magnetization direction implies a finite
term of 1/z contribution. This is a remarkable improvement with respect to
a straightforward extension of the method of ref. 3 which gives according
to refs. 4 and 17 an infinite number of 1/z contributions when applied to
quantum magnetic system.
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In terms of the two quasi-time spin correlations functions

Ca, a
−

i
(y− yŒ)=O(sai (y)−m

a
i )(s

a
i (yŒ)−m

a
i )P0

L (1)=1
2 C
ijaaŒ
JaijJ

aŒ
ij F

b

0
F
y

0
CaaŒi (y− yŒ) C

aaŒ
j (y−yŒ) dy dyŒ

(27)

It is worth to note that the correlation functions must be defined out of
equilibrium and than with a statistical weight which does not commute
with the evolution operator. This is an important difference with the stan-
dard Green functions methods.
In the Ising model, where the symmetry breaking operator commutes

with the Hamiltonian, correlations functions do not depend on the imagi-
nary time and we simply recover the second term of high temperature
expansion at fixed order parameter of ref. 3.
We shall limit ourselves, for sake of simplicity, to the case in which the

symmetry breaking direction is associated to a single angular variable h.
Those ni=n

(0)
i implies hi=hi, 0. Corrections to the mean field imply the

solution of the variational problem in m and h which takes into account
Eq. (27). This problem can be solved by an iterative procedure based on an
expansion of the extremum condition with respect to the angular variable
in the neighbourhood of hi=hi, 0 and the correction to the angular variable
h is given by the solution of the following equation

“
2H0
“h2
:
h=h0

Dh=
“W (1)

“h
:
h=h0

(28)

where Dh is the correction to hi, 0. The zero-th order term is missing in (28)
because hi=hi, 0 is a solution of the stationary condition for H0. Finally the
self consistent equation for the magnetization is given as

mi=tanh 1bn|h=h0+b
“n

“hi
:
h=h0

Dh+
“L (1)

“mi
:
h=h0

2 (29)

This iterative approach can be generalized to any arbitrary order in power
of 1/z.
A similar procedure can be developed for the traditional definition of

the thermodynamic functional of Eq. (9). The only difference arise when
the expansion with respect to fluctuation Hamiltonian is introduced. In this
case, the evolution in the imaginary time of Eq. (22) is related to li(0)
instead of bni. In the limit of infinite coordination number this is irrelevant
but when corrections beyond the mean field are taken into account the
inverse susceptibility “li(0)/“mi=1/(1−m2) appears in the extremum
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condition. As a consequence the expansion is not well behaved for
0 [ m [ 1. However, it is worth to note that m=1 is of the physical inter-
est only in low temperature limit where both these approaches diverge.
As we shall see in the quantum Ising model, in the traditional

approach is also possible to work with a fixed direction ni. This is, actually,
the choice made in ref. 14.
We shall compare results of these different approaches in the following

sections.

3. XY MODEL IN AN HYPERCUBIC LATTICE

The XY model shows the spontaneous breakdown of a continuous
symmetry associated to the rotation around the z axis. As a consequence of
the Mermin and Wagner theorem (18) this transition is expected, for non
vanishing temperature, only for dimensionality z > 4 for an hypercubic
lattice. Mean field theory and Random Phase Approximation can be found
in ref. 19. This model can be also interpreted as a lattice spin gas model at
half filling and the analogous of the magnetic order is the presence of a
superfluid phase. Moreover the lattice gas model corresponds to the infinite
repulsion limit of the boson Hubbard model at half filling. (20) This model is
of current interest because of recent experimental realizations with the
optical lattices. (21) From this point of view our results give a first correction
in 1/z to the superfluid density at half filling for infinite on site interac-
tion. (22)

This model can be obtained from (8) choosing mai=0 -a, J
x
ij=

Jyij=J/z and J
z
ij=0. With the assumption of the invariance of the mag-

netization under translation (mi=m, -i) we obtain for the modulus n and
the versor nŒ:

n=Jm

nŒx=cos j

nŒy=sin j

nŒz=0

(30)

From (30) we obtain, as expected, that any direction in the XY plane may
be chosen as magnetization direction. In the following we choose the x axis
as the symmetry breaking direction. Moreover, due to the Eq. (24), the
modulus of the magnetization obeys to the usual mean field self consistent
equation.

m=tanh(bJm) (31)
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Because of the absence of an external field the magnetization above the
critical temperature vanishes while below lies on the symmetry invariance
subspace. The zero-th order term of W, for site, is obtained by Eq. (23).

W (0)=−
1
b
5C
i

1+mi
2
ln 11+mi

2
2+1−mi

2
ln 11−mi

2
26+J

2
m2 (32)

To evaluate the first correction to W we need to evaluate the local correla-
tions functions Ca, aŒi (y−yŒ) for any a and aŒ. Having chosen the x-axis as
magnetization direction we obtain:

Cx, xi (y−yŒ)=1−m
2

Cx, yi (y− yŒ)=0

Cy, xi (y− yŒ)=0

Cy, yi (y− yŒ)=cosh[2n(y− yŒ)]+m sinh[2n(y−yŒ)]

(33)

Substituting in (27) we obtain for W (1) for single site

W (1)=
b2J2

4z
3(1−m2)2+1

2
(1−m2)+

1
2bJ
+

1
32b2J2m2

[(1−m)2 exp(4bJm)

+(1+m)2 exp(−4bJm)−2(1+m2)]4 (34)

The first term is equivalent to the Onsager reaction field of the Ising
model (3) while the other terms are due to the quantum nature of the
systems. From the previous equation, we can also see that, for this model,
no correction to the magnetization direction occurs as expected because of
the absence of the transverse field.
We can compare this result with the one obtained in the traditional

approach based on the thermodynamic functional Eq. (9). Correlation
functions can be obtained from (33) substituting n with l(0). From these
correlation functions, taking into account Eq. (17) it is easy to obtain the
first correction, for single site, in 1/z.

F (1)=
b2J2

4z
3(1−m2)2+1

2
(1−m2)+

m
2bl(0)
4 (35)

where l(0) can be written as function of m taking into account rela-
tion (17).
To compare the results of these two approaches we must, at first,

evaluate the value of the magnetization which minimize the two functionals
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Fig. 1. Comparison between the free energies of our approach and the traditional one for
the XY model in a simple cubic lattice (z=6).

and then compare the free energies calculated at the minimum. The results
of this comparison are summarized in Fig. 1. We note a slight improvement
that is more evident in low temperature. From the knowledge of W it is
possible to calculate any physical quantity of the system in both the high
and low temperature phases. We begin by considering the critical tempera-
ture Tc. We expand W in powers of m and determine the critical tempera-
ture as the value of b at which the m2 coefficient vanishes. From (34) we
obtain the following equations

W=W(0)(b)+W(2)(b) m2+W(4)(b) m4+·· · (36)

where the coefficient are given by

W(0)(b)=ln 2+
b2J2

2z

W(2)(b)=−
1
2
+
bJ
2
−
b2J2

2z
−
b3J3

3z
+
b4J4

6z

W(4)(b)=−
1
12
+
b2J2

4z
−
4b5J5

15z
+
b6J6

45z

(37)

Hence the critical temperature is given from the solution of

1=bcJ−
b2cJ

2

z
11+2

3
bcJ−

1
3
b2cJ

22 (38)

Neglecting second order contribution in 1/z in the solution of (38) we
obtain

bcJ=1+
4
3
1
z

(39)
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Quantum fluctuations introduce two competitive terms that, for high
dimensionality, make the XY model critical temperature lower than in the
Ising one (bcJ=1+1/z). The critical temperature can be compared with
the one obtained with the approach of the Random Phase Approximation
at the same order in 1/z. For the XY model the random phase approxima-
tion (19) gives the following equation for the order parameter

m
N

C
n
coth 5bJ0m=1−

Jn
J0
6=1 (40)

where Jn is the nth eigenvalues of coupling matrix Jij and J0 is the greatest
of these eigenvalues. In the random phase approximation we perform an
arbitrary resummation with respect to 1/z. To compare this result for the
critical temperature with our approach we must recover the term propor-
tional to the inverse of number of next neighbours. Expanding l.h.s. of (40)
to the first non vanishing term we obtain the 1/z correction. In the limit of
vanishing m we obtain

bcJ=1+
3
8z

(41)

It can be observed that all approximations beyond the mean field approx-
imation reduce the critical temperature. Our approach gives the lowest Tc,
and hence it is in a better agreement to the to ‘‘true critical temperature’’
obtained from high temperature expansion for different lattices (23) than the
others.
Another important thermodynamical quantity is the order parameter

near the critical temperature. Neglecting powers greater than m4 in the
expansion of W for small m we obtain

m==(b−bc) W
−

(2)(bc)
2W(4)(bc)

(42)

substituting our result we obtain

m

`3J(b−bc)
=1−

9
10z
+0 1 1

z2
2 (43)

Quantum fluctuations have a significant effect on the slope with respect to
the Ising case where the slope is equal to 1+1/2z.
Moreover the expansion in 1/z for the free energies of quantum mag-

netic systems allows to generalize the procedure established in ref. 3 for the
evaluation of the critical exponent.
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Table I. Correction to the Critical

Index Obtained with the Approach

Described Above

z=6 z=8

Dc/c 0.173 0.089

The basic point is to rearrange the 1/z series expansion in terms of an
auxiliary parameter m connected with the fluctuation operator Hf. Thus
from the knowledge of W to a given order in 1/z it is possible to obtain an
infinite series for c in power of m. The value of the critical index c is
obtained by a truncation of the series at fixed order and an extrapolation
to m=1. Actually the series sums up to 1 for m=1 except in the square
lattice (z=4) where the series is divergent. This result can be interpreted as
a consequence of absence of an ordered phase for the XY model in two
dimension. (18) The knowledge of the first order correction in 1/z to the free
energy is however consistent only with a truncation to the first order of the
expansion in m. As a consequence the extrapolation to m=1 gives very
unrealistic results, but the relative importance of quantum correctionsis in
any case of some interest.

4. ISING MODEL IN A TRANSVERSE FIELD

Quantum Ising model is defined by the following hamiltonian

n=`J2m2 cos2 h+h2

nŒx=
h
n

nŒy=0

nŒz=
Jm cos h
n

(44)

It is obtained from (8) choosing Jxij=J
y
ij=0, J

z
ij=J/z, and h

x
i=h while

hzi=h
y
i=0.
The model is of direct interest in various fields from quantum compu-

ting (24) to spin glass (25, 26) and quantum annealing. (27, 28) As far as critical
properties are concerned the work of Suzuki (29) establishes that the statisti-
cal mechanics is the same of the classical system in d+1 dimension.
Although this result is very useful to relate critical properties of a system
with and without transverse field, it does not suggest any systematic
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expansion of thermodynamical quantities. A result which can be inter-
preted as a first order in 1/z expansion for an hypercubic lattice is obtained
in ref. 14.
At first we note that, with simple physical considerations, the magne-

tization must lies in the xz plane and those we shall put j=0 in the
follows. Then W (0), for each site, turns out to be

W (0)=−511
2
+m2 ln 11

2
+m2+11

2
−m2 ln 11

2
−m26

+b 1J
2
m2 cos2 h+hm sin h2 (45)

From the magnetization direction selection ni=n
−

i and taking into
account (44) we obtain that two different directions are possible for h.

sin h=
h
Jm

cos h=0

(46)

The first case of (46), which implies h/Jm < 1, corresponds to the ordered
phase while the second to a disordered one. According to (24) m is given by

m=tanh(b`h2+J2m2 cos2 h) (47)

Substituting the result for h obtained from (46) in (47) we obtain

m=tanh(bh) disordered phase

m=tanh(bJm) ordered phase
(48)

It is interesting to note that the amplitude of the magnetization does not
depend on the external field in the ordered phase in mean field approxima-
tion. As expected, m vanishes in the infinite temperature limit and then the
second case of (46) must be taken into account (disordered phase). On the
contrary at low temperature m grows and, if h/J [ 1, there is a tempera-
ture at which the first case of (46) becomes valid (ordered phase). As it can
be easily verified from W the critical temperature in the presence of a
transverse field is the one at which the magnetization direction aligns with
the transverse field, i.e., h/Jm=1 Substituting in (48) we obtain

1
Tc
=
1
h
tanh−1 1 h

J
2 (49)
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From the condition for an ordered phase h/J [ 1 the critical field hc is
hc=J which corresponds to Tc=0.
To study first order corrections to W we must evaluate the local corre-

lation function Cz, zi (y−yŒ). A simple calculation gives

Cz, zi (y−yŒ)=cos
2(h)+sin2(h)[cosh(2n(y− yŒ))−m sinh(2n(y− yŒ))] (50)

From (50) it is possible to obtain W (1) and then it is possible to obtain
corrections to equilibrium magnetization amplitude and direction as shown
in Section 2.
For sake of comparison it is worth to summarize main points of

ref. 14. This work can be seen as a particular case of the usual approach
defined in Eq. (9) in which the direction of the symmetry breaking operator
is fixed along the z axis. Consequently, the Legendre transformation
introduces a dependence on only one parameter, i.e., the z component of
the magnetization. The result for the free energy can be, actually, recovered
developing the expansion of (9) and then taking into account the substitu-
tions summarized in Table II.
It is possible to compare results for the free energies of the two

approaches as function of the temperature for different values of the
external field h (Fig. 2). The two approaches have the same limit for
vanishing h, i.e., the free energy of the Ising model and thus, for small
value of h the difference is very small and grows when the amplitude of the
external field increases. It is worth to note that, for any values of h, the
corrections become larger when the temperature is close to Tc.
All these features are a consequence of the existence, in our method, of

a second parameter which allows, via a variational calculation, a resum-
mation of the 1/z expansion both for the z and x component of the mag-
netization. In our approach, the resummation on the x axis, due to the

Table II. Substitutions Needed to

Recover from the Expansion of

Eq. (2) the Stratt’s Expansion(14)

This work Stratt (14)

bl(0) C

m cos h mz
m tanh C
sin h bK/C
cos h c/C
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Fig. 2. Comparison between the free energies at different temperature of our approach and
the free energy evaluated by Stratt (14) for an hypercubic lattice with z=6. In Fig. 2(a) is
represented the comparison above Tc and in Fig. 2(b) the comparison below this temperature.
The triangles corresponds to h/J=0.2, the stars corresponds to h/J=0.4, and the grey boxes
to h/J=0.6. Tc is the critical temperature evaluated in our approach.

Eq. (29) holds even in the ‘‘normal,’’ i.e., disordered, phase, where the
direction is fixed by h=p/2. On the other hand the Stratt’s approach has
no resummation above the critical temperature but only an expansion in
power of 1/z. It is then expected that results, for fixed external field ampli-
tude, are quite different between the two approaches, and this difference
increases when the temperature is lowered toward Tc. Below this tempera-
ture the competition between the x and the z components of the magneti-
zation decreases the role of the x component of the magnetization and the
differences are lowered. On the other hand, at any temperature, the differ-
ence is enhanced when the role of mx is increased enhancing the amplitude
of the external field h. (See Fig. 3.)
We have made the same kind of comparison between our approach

and the one derived form Eq. (9) for this model. The comparison shows
that this third approach is an improvement of the evaluation of the free
energy made by Stratt, at least close to Tc, but it is worse then our
approach according to the same comparison made for the XY model.
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h/J
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1

Tc/J

Fig. 3. The critical temperature as function of external field for different coordination
numbers compared with the same results obtained by Stratt in ref. 14. Boxes and triangles
refer to our’s result while dashed and dot lines refer to Stratt’s result respectively for z=6 and
z=8. The upper line is the mean field result.

5. CONCLUSION

We obtain the magnetization amplitude and direction in the ordered
phase for the quantum magnetic system from extremum conditions of the
statistical functional related to the LSSP. This quantity is different from
the free energy defined in the presence of the symmetry breaking fields in
the case of quantum system where the symmetry breaking operators does
not commute with the hamiltonian. We derive an expansion in the inverse
coordination number which is valid even in the presence of quantum
fluctuations. This expansion avoids the divergency in the number of
‘‘diagrams’’ corresponding to the same order which seems to be a draw-
back of a direct 1/kBT expansion in the case of quantum magnetic
system. (4) Moreover the characterization of the ordered phase in terms of
thermodynamics functionals based on a quantum information concept like
LSSP allows to define an expansion which is uniform in the magnetization
amplitude while the standard approach based on generalization of the free
energy in the presence of a symmetry breaking perturbation is affected by
divergencies in the m=1 limit. It is, however, expected that both expansion
are asymptotic with a zero radius of convergence Results for XY and
quantum Ising model compare favorably with those of other approaches.
In the latter case the improvement is also due to the new variational
scheme which takes into account both the magnetization and the direction
in the Hilbert space, and then, allows a meaningful resummation of the 1/z
expansion valid both above and below the critical temperature.
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